Cremona's table of elliptic curves

Curve 63525bm1

63525 = 3 · 52 · 7 · 112



Data for elliptic curve 63525bm1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 11- Signs for the Atkin-Lehner involutions
Class 63525bm Isogeny class
Conductor 63525 Conductor
∏ cp 3 Product of Tamagawa factors cp
deg 435456 Modular degree for the optimal curve
Δ 565194987328125 = 3 · 56 · 77 · 114 Discriminant
Eigenvalues  2 3- 5+ 7+ 11-  2  3  4 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-37308,2514419] [a1,a2,a3,a4,a6]
Generators [3160538:7920775:39304] Generators of the group modulo torsion
j 25104437248/2470629 j-invariant
L 15.595706182463 L(r)(E,1)/r!
Ω 0.50331174344423 Real period
R 10.328725278322 Regulator
r 1 Rank of the group of rational points
S 1.000000000019 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2541i1 63525by1 Quadratic twists by: 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations