Cremona's table of elliptic curves

Curve 64251l1

64251 = 32 · 112 · 59



Data for elliptic curve 64251l1

Field Data Notes
Atkin-Lehner 3- 11- 59+ Signs for the Atkin-Lehner involutions
Class 64251l Isogeny class
Conductor 64251 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 7920 Modular degree for the optimal curve
Δ -5204331 = -1 · 36 · 112 · 59 Discriminant
Eigenvalues  0 3- -2 -3 11- -2 -2  5 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-66,-234] [a1,a2,a3,a4,a6]
Generators [12:26:1] Generators of the group modulo torsion
j -360448/59 j-invariant
L 2.3428821902798 L(r)(E,1)/r!
Ω 0.83004571760739 Real period
R 2.822594154146 Regulator
r 1 Rank of the group of rational points
S 1.0000000000372 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7139d1 64251k1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations