Cremona's table of elliptic curves

Curve 64320bf1

64320 = 26 · 3 · 5 · 67



Data for elliptic curve 64320bf1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 67- Signs for the Atkin-Lehner involutions
Class 64320bf Isogeny class
Conductor 64320 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 98304 Modular degree for the optimal curve
Δ 1286400000000 = 214 · 3 · 58 · 67 Discriminant
Eigenvalues 2+ 3- 5+ -4  4 -2  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-3601,-63985] [a1,a2,a3,a4,a6]
Generators [-1095:3520:27] Generators of the group modulo torsion
j 315278049616/78515625 j-invariant
L 6.0512206325973 L(r)(E,1)/r!
Ω 0.62753533384623 Real period
R 4.8214182578407 Regulator
r 1 Rank of the group of rational points
S 1.0000000000834 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 64320bs1 8040i1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations