Cremona's table of elliptic curves

Curve 6450bm1

6450 = 2 · 3 · 52 · 43



Data for elliptic curve 6450bm1

Field Data Notes
Atkin-Lehner 2- 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 6450bm Isogeny class
Conductor 6450 Conductor
∏ cp 272 Product of Tamagawa factors cp
deg 261120 Modular degree for the optimal curve
Δ -1.16870086656E+20 Discriminant
Eigenvalues 2- 3- 5-  0 -4 -2  0 -2 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-5452263,4927267017] [a1,a2,a3,a4,a6]
Generators [1398:-6843:1] Generators of the group modulo torsion
j -9177493130077937309/59837484367872 j-invariant
L 6.7840977726471 L(r)(E,1)/r!
Ω 0.18776268331166 Real period
R 0.53134170196002 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 51600cd1 19350bl1 6450f1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations