Cremona's table of elliptic curves

Curve 64680bh5

64680 = 23 · 3 · 5 · 72 · 11



Data for elliptic curve 64680bh5

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7- 11+ Signs for the Atkin-Lehner involutions
Class 64680bh Isogeny class
Conductor 64680 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -2.802619771875E+23 Discriminant
Eigenvalues 2- 3+ 5+ 7- 11+  2  6  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,9556944,22788002700] [a1,a2,a3,a4,a6]
Generators [-453207671579:27137427948428:327082769] Generators of the group modulo torsion
j 400647648358480318/1163177490234375 j-invariant
L 5.3620553823018 L(r)(E,1)/r!
Ω 0.068698777327172 Real period
R 19.512921448169 Regulator
r 1 Rank of the group of rational points
S 1.0000000000038 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 129360cb5 9240bj6 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations