Cremona's table of elliptic curves

Curve 65472bt4

65472 = 26 · 3 · 11 · 31



Data for elliptic curve 65472bt4

Field Data Notes
Atkin-Lehner 2- 3+ 11- 31+ Signs for the Atkin-Lehner involutions
Class 65472bt Isogeny class
Conductor 65472 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 19911868416 = 216 · 34 · 112 · 31 Discriminant
Eigenvalues 2- 3+  2  0 11-  2 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-320097,69812865] [a1,a2,a3,a4,a6]
Generators [9129:9460:27] Generators of the group modulo torsion
j 55346472949076068/303831 j-invariant
L 6.6983613195114 L(r)(E,1)/r!
Ω 0.82826805379026 Real period
R 4.0435951193473 Regulator
r 1 Rank of the group of rational points
S 0.99999999998153 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 65472t4 16368j4 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations