Cremona's table of elliptic curves

Curve 66576bc1

66576 = 24 · 3 · 19 · 73



Data for elliptic curve 66576bc1

Field Data Notes
Atkin-Lehner 2- 3- 19- 73- Signs for the Atkin-Lehner involutions
Class 66576bc Isogeny class
Conductor 66576 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 92160 Modular degree for the optimal curve
Δ 8953131958272 = 222 · 34 · 192 · 73 Discriminant
Eigenvalues 2- 3-  0 -2  4  0  2 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-7248,-191340] [a1,a2,a3,a4,a6]
Generators [-33:114:1] Generators of the group modulo torsion
j 10282015068625/2185823232 j-invariant
L 8.1219111029756 L(r)(E,1)/r!
Ω 0.52520069192168 Real period
R 1.9330494103203 Regulator
r 1 Rank of the group of rational points
S 1.0000000000521 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8322g1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations