Cremona's table of elliptic curves

Curve 66600bk1

66600 = 23 · 32 · 52 · 37



Data for elliptic curve 66600bk1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 37+ Signs for the Atkin-Lehner involutions
Class 66600bk Isogeny class
Conductor 66600 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 2433024 Modular degree for the optimal curve
Δ -7.112021484375E+20 Discriminant
Eigenvalues 2- 3- 5+  0  0 -6  2 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4612575,-4023062750] [a1,a2,a3,a4,a6]
Generators [552179185:47414701350:68921] Generators of the group modulo torsion
j -3721915550952016/243896484375 j-invariant
L 5.331244668154 L(r)(E,1)/r!
Ω 0.051314825924133 Real period
R 12.986609065107 Regulator
r 1 Rank of the group of rational points
S 0.99999999999776 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 22200g1 13320d1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations