Cremona's table of elliptic curves

Curve 67155x1

67155 = 3 · 5 · 112 · 37



Data for elliptic curve 67155x1

Field Data Notes
Atkin-Lehner 3- 5- 11- 37- Signs for the Atkin-Lehner involutions
Class 67155x Isogeny class
Conductor 67155 Conductor
∏ cp 108 Product of Tamagawa factors cp
deg 722304 Modular degree for the optimal curve
Δ -1254753059291015625 = -1 · 34 · 59 · 118 · 37 Discriminant
Eigenvalues -1 3- 5- -1 11-  1  2 -5 Hecke eigenvalues for primes up to 20
Equation [1,0,0,225965,34590722] [a1,a2,a3,a4,a6]
Generators [2309:112283:1] Generators of the group modulo torsion
j 5952585451439/5853515625 j-invariant
L 5.0442951494234 L(r)(E,1)/r!
Ω 0.17927613605815 Real period
R 0.26052790734398 Regulator
r 1 Rank of the group of rational points
S 1.0000000001025 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 67155u1 Quadratic twists by: -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations