Cremona's table of elliptic curves

Curve 67599i1

67599 = 32 · 7 · 29 · 37



Data for elliptic curve 67599i1

Field Data Notes
Atkin-Lehner 3- 7- 29- 37- Signs for the Atkin-Lehner involutions
Class 67599i Isogeny class
Conductor 67599 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 253440 Modular degree for the optimal curve
Δ -158472629688051 = -1 · 312 · 7 · 292 · 373 Discriminant
Eigenvalues  2 3-  1 7-  1  1  2  8 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-1767,606343] [a1,a2,a3,a4,a6]
Generators [-94:6323:8] Generators of the group modulo torsion
j -836962177024/217383579819 j-invariant
L 15.693407601555 L(r)(E,1)/r!
Ω 0.46887661904045 Real period
R 2.7891857125441 Regulator
r 1 Rank of the group of rational points
S 1.0000000000173 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 22533b1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations