Cremona's table of elliptic curves

Curve 67680h2

67680 = 25 · 32 · 5 · 47



Data for elliptic curve 67680h2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 47+ Signs for the Atkin-Lehner involutions
Class 67680h Isogeny class
Conductor 67680 Conductor
∏ cp 96 Product of Tamagawa factors cp
Δ -7420543488000 = -1 · 212 · 38 · 53 · 472 Discriminant
Eigenvalues 2+ 3- 5-  0  4 -4 -4 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,4308,73024] [a1,a2,a3,a4,a6]
Generators [38:-540:1] Generators of the group modulo torsion
j 2961169856/2485125 j-invariant
L 7.2607378820271 L(r)(E,1)/r!
Ω 0.48130549422848 Real period
R 0.62856283322982 Regulator
r 1 Rank of the group of rational points
S 0.99999999994424 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 67680n2 22560s2 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations