Cremona's table of elliptic curves

Curve 68160cl1

68160 = 26 · 3 · 5 · 71



Data for elliptic curve 68160cl1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 71+ Signs for the Atkin-Lehner involutions
Class 68160cl Isogeny class
Conductor 68160 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 180224 Modular degree for the optimal curve
Δ -4089600000000 = -1 · 214 · 32 · 58 · 71 Discriminant
Eigenvalues 2- 3+ 5-  2  4  6  0 -8 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-9905,395025] [a1,a2,a3,a4,a6]
Generators [35:300:1] Generators of the group modulo torsion
j -6560109033424/249609375 j-invariant
L 7.2120843264327 L(r)(E,1)/r!
Ω 0.77547146078149 Real period
R 0.58126609828477 Regulator
r 1 Rank of the group of rational points
S 1.0000000001384 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 68160br1 17040d1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations