Cremona's table of elliptic curves

Curve 68400fr4

68400 = 24 · 32 · 52 · 19



Data for elliptic curve 68400fr4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19- Signs for the Atkin-Lehner involutions
Class 68400fr Isogeny class
Conductor 68400 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 6840288648000000000 = 212 · 38 · 59 · 194 Discriminant
Eigenvalues 2- 3- 5+  4  4 -2  2 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-21627075,-38711722750] [a1,a2,a3,a4,a6]
j 23977812996389881/146611125 j-invariant
L 4.4805387693177 L(r)(E,1)/r!
Ω 0.070008418570351 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4275g4 22800ch4 13680bg3 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations