Cremona's table of elliptic curves

Curve 69360j2

69360 = 24 · 3 · 5 · 172



Data for elliptic curve 69360j2

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 17+ Signs for the Atkin-Lehner involutions
Class 69360j Isogeny class
Conductor 69360 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 130184375666918400 = 210 · 36 · 52 · 178 Discriminant
Eigenvalues 2+ 3+ 5+ -4  4  2 17+  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1768776,-904679424] [a1,a2,a3,a4,a6]
Generators [-2724416232:-319025655:3511808] Generators of the group modulo torsion
j 24759905519524/5267025 j-invariant
L 4.5216720682765 L(r)(E,1)/r!
Ω 0.13091423397239 Real period
R 8.6347983915931 Regulator
r 1 Rank of the group of rational points
S 1.0000000001129 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 34680bs2 4080q2 Quadratic twists by: -4 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations