Cremona's table of elliptic curves

Curve 69440ed1

69440 = 26 · 5 · 7 · 31



Data for elliptic curve 69440ed1

Field Data Notes
Atkin-Lehner 2- 5- 7- 31- Signs for the Atkin-Lehner involutions
Class 69440ed Isogeny class
Conductor 69440 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 430080 Modular degree for the optimal curve
Δ -64833521500160 = -1 · 214 · 5 · 77 · 312 Discriminant
Eigenvalues 2-  3 5- 7- -3 -1  3 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-89872,-10377376] [a1,a2,a3,a4,a6]
Generators [343515:38736019:27] Generators of the group modulo torsion
j -4899784645684224/3957124115 j-invariant
L 12.755849201166 L(r)(E,1)/r!
Ω 0.13786131719741 Real period
R 6.6090481675678 Regulator
r 1 Rank of the group of rational points
S 0.99999999999509 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 69440bm1 17360l1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations