Cremona's table of elliptic curves

Curve 69696bi1

69696 = 26 · 32 · 112



Data for elliptic curve 69696bi1

Field Data Notes
Atkin-Lehner 2+ 3- 11- Signs for the Atkin-Lehner involutions
Class 69696bi Isogeny class
Conductor 69696 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 61440 Modular degree for the optimal curve
Δ -351187550208 = -1 · 214 · 311 · 112 Discriminant
Eigenvalues 2+ 3-  0  1 11-  6  4 -1 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2640,-59488] [a1,a2,a3,a4,a6]
Generators [3433:201123:1] Generators of the group modulo torsion
j -1408000/243 j-invariant
L 7.4930556259519 L(r)(E,1)/r!
Ω 0.32990963416338 Real period
R 5.6781121635359 Regulator
r 1 Rank of the group of rational points
S 0.99999999993445 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 69696fl1 8712v1 23232e1 69696bj1 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations