Cremona's table of elliptic curves

Curve 70110l1

70110 = 2 · 32 · 5 · 19 · 41



Data for elliptic curve 70110l1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 19- 41+ Signs for the Atkin-Lehner involutions
Class 70110l Isogeny class
Conductor 70110 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 51953664 Modular degree for the optimal curve
Δ 1.4169870497247E+28 Discriminant
Eigenvalues 2+ 3- 5+  0  4 -2  6 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-855884160,7751564476416] [a1,a2,a3,a4,a6]
Generators [17363577998016460560:-3690602593532572296993:301949653225472] Generators of the group modulo torsion
j 95113278267623740832229365761/19437408089501643413913600 j-invariant
L 4.6046947722947 L(r)(E,1)/r!
Ω 0.037485495292716 Real period
R 30.709843480593 Regulator
r 1 Rank of the group of rational points
S 0.99999999986263 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 23370x1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations