Cremona's table of elliptic curves

Curve 70350p1

70350 = 2 · 3 · 52 · 7 · 67



Data for elliptic curve 70350p1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 7- 67+ Signs for the Atkin-Lehner involutions
Class 70350p Isogeny class
Conductor 70350 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 604800 Modular degree for the optimal curve
Δ 5405131200000000 = 212 · 3 · 58 · 75 · 67 Discriminant
Eigenvalues 2+ 3+ 5- 7- -2 -6 -1  5 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-186700,-30926000] [a1,a2,a3,a4,a6]
Generators [-264:356:1] Generators of the group modulo torsion
j 1842469324247785/13837135872 j-invariant
L 3.2819557041637 L(r)(E,1)/r!
Ω 0.22977871962334 Real period
R 1.4283114243342 Regulator
r 1 Rank of the group of rational points
S 1.0000000003335 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 70350db1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations