Cremona's table of elliptic curves

Curve 71148m1

71148 = 22 · 3 · 72 · 112



Data for elliptic curve 71148m1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 11+ Signs for the Atkin-Lehner involutions
Class 71148m Isogeny class
Conductor 71148 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 1596672 Modular degree for the optimal curve
Δ -4567281333560228976 = -1 · 24 · 3 · 79 · 119 Discriminant
Eigenvalues 2- 3+ -3 7- 11+ -5  6 -7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,152178,-100301991] [a1,a2,a3,a4,a6]
Generators [17796:-456533:27] Generators of the group modulo torsion
j 256/3 j-invariant
L 3.0755085997679 L(r)(E,1)/r!
Ω 0.12029214852894 Real period
R 2.1305828055639 Regulator
r 1 Rank of the group of rational points
S 1.0000000000542 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 71148bs1 71148l1 Quadratic twists by: -7 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations