Cremona's table of elliptic curves

Curve 71478bi1

71478 = 2 · 32 · 11 · 192



Data for elliptic curve 71478bi1

Field Data Notes
Atkin-Lehner 2- 3+ 11+ 19+ Signs for the Atkin-Lehner involutions
Class 71478bi Isogeny class
Conductor 71478 Conductor
∏ cp 36 Product of Tamagawa factors cp
deg 120960 Modular degree for the optimal curve
Δ -760352085504 = -1 · 29 · 39 · 11 · 193 Discriminant
Eigenvalues 2- 3+ -1 -4 11+ -2  3 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,1,2212,11935] [a1,a2,a3,a4,a6]
Generators [-5:29:1] [5:149:1] Generators of the group modulo torsion
j 8869743/5632 j-invariant
L 13.327084240576 L(r)(E,1)/r!
Ω 0.55871694618584 Real period
R 0.66258377696929 Regulator
r 2 Rank of the group of rational points
S 0.9999999999997 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 71478e1 71478a1 Quadratic twists by: -3 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations