Cremona's table of elliptic curves

Curve 71568bj4

71568 = 24 · 32 · 7 · 71



Data for elliptic curve 71568bj4

Field Data Notes
Atkin-Lehner 2- 3- 7+ 71+ Signs for the Atkin-Lehner involutions
Class 71568bj Isogeny class
Conductor 71568 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 1070802654069915648 = 217 · 38 · 72 · 714 Discriminant
Eigenvalues 2- 3-  2 7+  0  2  6  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-10853139,-13761897518] [a1,a2,a3,a4,a6]
Generators [698136879018755:-13094867476768446:176086820125] Generators of the group modulo torsion
j 47348075501445486097/358609642272 j-invariant
L 8.0344165447474 L(r)(E,1)/r!
Ω 0.083178466767982 Real period
R 24.148126480305 Regulator
r 1 Rank of the group of rational points
S 1.0000000001174 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8946j4 23856ba4 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations