Cremona's table of elliptic curves

Curve 72842d1

72842 = 2 · 7 · 112 · 43



Data for elliptic curve 72842d1

Field Data Notes
Atkin-Lehner 2+ 7+ 11- 43+ Signs for the Atkin-Lehner involutions
Class 72842d Isogeny class
Conductor 72842 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 537600 Modular degree for the optimal curve
Δ -32963198903140352 = -1 · 214 · 74 · 117 · 43 Discriminant
Eigenvalues 2+ -1  0 7+ 11-  2 -2  6 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-16095,8763781] [a1,a2,a3,a4,a6]
Generators [127:-3028:1] [-18:3017:1] Generators of the group modulo torsion
j -260305116625/18606866432 j-invariant
L 6.5894779096503 L(r)(E,1)/r!
Ω 0.30448616424447 Real period
R 1.3525815544558 Regulator
r 2 Rank of the group of rational points
S 1.000000000022 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6622i1 Quadratic twists by: -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations