Cremona's table of elliptic curves

Curve 72864i1

72864 = 25 · 32 · 11 · 23



Data for elliptic curve 72864i1

Field Data Notes
Atkin-Lehner 2+ 3- 11+ 23- Signs for the Atkin-Lehner involutions
Class 72864i Isogeny class
Conductor 72864 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 92160 Modular degree for the optimal curve
Δ 6044481501696 = 29 · 36 · 113 · 233 Discriminant
Eigenvalues 2+ 3- -1  3 11+  3  1 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-5283,88614] [a1,a2,a3,a4,a6]
Generators [-63:414:1] Generators of the group modulo torsion
j 43688592648/16194277 j-invariant
L 6.7640454748034 L(r)(E,1)/r!
Ω 0.69096251099813 Real period
R 0.81577574354972 Regulator
r 1 Rank of the group of rational points
S 1.0000000001049 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 72864m1 8096f1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations