Cremona's table of elliptic curves

Curve 7310h1

7310 = 2 · 5 · 17 · 43



Data for elliptic curve 7310h1

Field Data Notes
Atkin-Lehner 2+ 5- 17+ 43- Signs for the Atkin-Lehner involutions
Class 7310h Isogeny class
Conductor 7310 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 8736 Modular degree for the optimal curve
Δ -57462448000 = -1 · 27 · 53 · 174 · 43 Discriminant
Eigenvalues 2+ -2 5- -3 -2  1 17+  3 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-2713,-55812] [a1,a2,a3,a4,a6]
Generators [94:675:1] Generators of the group modulo torsion
j -2207206464510601/57462448000 j-invariant
L 1.8160165216973 L(r)(E,1)/r!
Ω 0.3302621570282 Real period
R 0.91645201801623 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 58480j1 65790ci1 36550u1 124270d1 Quadratic twists by: -4 -3 5 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations