Cremona's table of elliptic curves

Curve 73920gy1

73920 = 26 · 3 · 5 · 7 · 11



Data for elliptic curve 73920gy1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7- 11- Signs for the Atkin-Lehner involutions
Class 73920gy Isogeny class
Conductor 73920 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 122880 Modular degree for the optimal curve
Δ 2510101440 = 26 · 33 · 5 · 74 · 112 Discriminant
Eigenvalues 2- 3- 5+ 7- 11-  2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-21796,1231310] [a1,a2,a3,a4,a6]
Generators [89:66:1] Generators of the group modulo torsion
j 17893449053367616/39220335 j-invariant
L 7.566334723612 L(r)(E,1)/r!
Ω 1.2468564102862 Real period
R 1.0113881411006 Regulator
r 1 Rank of the group of rational points
S 1.0000000001982 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 73920eb1 36960bm4 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations