Cremona's table of elliptic curves

Curve 75200cj1

75200 = 26 · 52 · 47



Data for elliptic curve 75200cj1

Field Data Notes
Atkin-Lehner 2- 5+ 47+ Signs for the Atkin-Lehner involutions
Class 75200cj Isogeny class
Conductor 75200 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 368640 Modular degree for the optimal curve
Δ 61603840000000 = 224 · 57 · 47 Discriminant
Eigenvalues 2- -1 5+  5 -3  5  0 -7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-57633,-5292863] [a1,a2,a3,a4,a6]
j 5168743489/15040 j-invariant
L 2.4654549765479 L(r)(E,1)/r!
Ω 0.30818186756821 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 75200u1 18800t1 15040bk1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations