Cremona's table of elliptic curves

Curve 75429p1

75429 = 32 · 172 · 29



Data for elliptic curve 75429p1

Field Data Notes
Atkin-Lehner 3- 17+ 29- Signs for the Atkin-Lehner involutions
Class 75429p Isogeny class
Conductor 75429 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 399360 Modular degree for the optimal curve
Δ -4802270283979011 = -1 · 319 · 173 · 292 Discriminant
Eigenvalues  0 3-  1 -2 -3 -5 17+ -7 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-88842,-10723851] [a1,a2,a3,a4,a6]
Generators [2099:95134:1] Generators of the group modulo torsion
j -21652318158848/1340825643 j-invariant
L 3.0331141006767 L(r)(E,1)/r!
Ω 0.13777204860609 Real period
R 1.3759658300129 Regulator
r 1 Rank of the group of rational points
S 1.000000000419 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 25143l1 75429c1 Quadratic twists by: -3 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations