Cremona's table of elliptic curves

Curve 76650dj1

76650 = 2 · 3 · 52 · 7 · 73



Data for elliptic curve 76650dj1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 73+ Signs for the Atkin-Lehner involutions
Class 76650dj Isogeny class
Conductor 76650 Conductor
∏ cp 152 Product of Tamagawa factors cp
deg 134064000 Modular degree for the optimal curve
Δ -7.3713655634134E+28 Discriminant
Eigenvalues 2- 3- 5- 7+ -4 -6 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-7489910138,249836775185892] [a1,a2,a3,a4,a6]
j -23791591511245078352410198157/37741391684676360339456 j-invariant
L 1.310675955765 L(r)(E,1)/r!
Ω 0.034491472088556 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 76650v1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations