Cremona's table of elliptic curves

Curve 76725s3

76725 = 32 · 52 · 11 · 31



Data for elliptic curve 76725s3

Field Data Notes
Atkin-Lehner 3- 5+ 11+ 31- Signs for the Atkin-Lehner involutions
Class 76725s Isogeny class
Conductor 76725 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 8.4492797470093E+20 Discriminant
Eigenvalues -1 3- 5+  4 11+  6 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-5160380,4291095872] [a1,a2,a3,a4,a6]
Generators [8022:85085:8] Generators of the group modulo torsion
j 1334200592015097841/74177490234375 j-invariant
L 4.5140802893722 L(r)(E,1)/r!
Ω 0.15604705870583 Real period
R 3.6159607307264 Regulator
r 1 Rank of the group of rational points
S 0.99999999954967 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 25575o3 15345e4 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations