Cremona's table of elliptic curves

Curve 77418o1

77418 = 2 · 32 · 11 · 17 · 23



Data for elliptic curve 77418o1

Field Data Notes
Atkin-Lehner 2- 3+ 11+ 17+ 23- Signs for the Atkin-Lehner involutions
Class 77418o Isogeny class
Conductor 77418 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 59520 Modular degree for the optimal curve
Δ -1862444826 = -1 · 2 · 39 · 112 · 17 · 23 Discriminant
Eigenvalues 2- 3+ -3 -4 11+  0 17+ -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-434,-3941] [a1,a2,a3,a4,a6]
Generators [278:1045:8] Generators of the group modulo torsion
j -458314011/94622 j-invariant
L 4.9418452002933 L(r)(E,1)/r!
Ω 0.51735207459822 Real period
R 2.3880474446144 Regulator
r 1 Rank of the group of rational points
S 1.0000000002939 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 77418f1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations