Cremona's table of elliptic curves

Curve 77616fn1

77616 = 24 · 32 · 72 · 11



Data for elliptic curve 77616fn1

Field Data Notes
Atkin-Lehner 2- 3- 7- 11+ Signs for the Atkin-Lehner involutions
Class 77616fn Isogeny class
Conductor 77616 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 1612800 Modular degree for the optimal curve
Δ -1649095260265119744 = -1 · 217 · 313 · 72 · 115 Discriminant
Eigenvalues 2- 3-  3 7- 11+ -6 -5  6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-701211,-234299702] [a1,a2,a3,a4,a6]
j -260607143968297/11270993184 j-invariant
L 2.9621875519089 L(r)(E,1)/r!
Ω 0.082282987790416 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 9 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 9702cd1 25872db1 77616em1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations