Cremona's table of elliptic curves

Curve 7770bb1

7770 = 2 · 3 · 5 · 7 · 37



Data for elliptic curve 7770bb1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 37- Signs for the Atkin-Lehner involutions
Class 7770bb Isogeny class
Conductor 7770 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 3072 Modular degree for the optimal curve
Δ 4972800 = 28 · 3 · 52 · 7 · 37 Discriminant
Eigenvalues 2- 3- 5- 7+  0 -6 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-410,-3228] [a1,a2,a3,a4,a6]
Generators [24:18:1] Generators of the group modulo torsion
j 7623273198241/4972800 j-invariant
L 7.3537569755078 L(r)(E,1)/r!
Ω 1.0609992541396 Real period
R 1.7327432010005 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 62160bu1 23310i1 38850i1 54390bn1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations