Cremona's table of elliptic curves

Curve 780c2

780 = 22 · 3 · 5 · 13



Data for elliptic curve 780c2

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13+ Signs for the Atkin-Lehner involutions
Class 780c Isogeny class
Conductor 780 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ -2190240000 = -1 · 28 · 34 · 54 · 132 Discriminant
Eigenvalues 2- 3- 5+ -2 -6 13+ -2 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,324,324] [a1,a2,a3,a4,a6]
Generators [12:78:1] Generators of the group modulo torsion
j 14647977776/8555625 j-invariant
L 2.3706082460728 L(r)(E,1)/r!
Ω 0.88476360205859 Real period
R 0.22328075738321 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3120n2 12480r2 2340h2 3900d2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations