Cremona's table of elliptic curves

Curve 78498g1

78498 = 2 · 32 · 72 · 89



Data for elliptic curve 78498g1

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 89- Signs for the Atkin-Lehner involutions
Class 78498g Isogeny class
Conductor 78498 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 33408 Modular degree for the optimal curve
Δ 343350252 = 22 · 39 · 72 · 89 Discriminant
Eigenvalues 2+ 3+  0 7-  3 -2 -2 -5 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-177,-127] [a1,a2,a3,a4,a6]
Generators [-8:31:1] Generators of the group modulo torsion
j 637875/356 j-invariant
L 4.3939380232387 L(r)(E,1)/r!
Ω 1.4047375728094 Real period
R 0.78198556513139 Regulator
r 1 Rank of the group of rational points
S 1.0000000009786 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 78498be1 78498a1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations