Cremona's table of elliptic curves

Curve 79200bn1

79200 = 25 · 32 · 52 · 11



Data for elliptic curve 79200bn1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 11- Signs for the Atkin-Lehner involutions
Class 79200bn Isogeny class
Conductor 79200 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 221184 Modular degree for the optimal curve
Δ 1334161125000000 = 26 · 36 · 59 · 114 Discriminant
Eigenvalues 2+ 3- 5+  2 11-  2 -2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-28425,560500] [a1,a2,a3,a4,a6]
Generators [240:-2750:1] Generators of the group modulo torsion
j 3484156096/1830125 j-invariant
L 7.3789090801296 L(r)(E,1)/r!
Ω 0.42334825064617 Real period
R 1.0893674816763 Regulator
r 1 Rank of the group of rational points
S 0.99999999963052 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 79200dk1 8800s1 15840bg1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations