Cremona's table of elliptic curves

Curve 7980d1

7980 = 22 · 3 · 5 · 7 · 19



Data for elliptic curve 7980d1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7- 19- Signs for the Atkin-Lehner involutions
Class 7980d Isogeny class
Conductor 7980 Conductor
∏ cp 216 Product of Tamagawa factors cp
deg 17280 Modular degree for the optimal curve
Δ -16295562990000 = -1 · 24 · 36 · 54 · 76 · 19 Discriminant
Eigenvalues 2- 3- 5+ 7-  0 -4 -6 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,1759,192720] [a1,a2,a3,a4,a6]
Generators [-41:231:1] Generators of the group modulo torsion
j 37597098131456/1018472686875 j-invariant
L 4.7744620159731 L(r)(E,1)/r!
Ω 0.52309703837924 Real period
R 1.5212161624818 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 6 Number of elements in the torsion subgroup
Twists 31920r1 127680bi1 23940t1 39900c1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations