Cremona's table of elliptic curves

Curve 79968br1

79968 = 25 · 3 · 72 · 17



Data for elliptic curve 79968br1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 17+ Signs for the Atkin-Lehner involutions
Class 79968br Isogeny class
Conductor 79968 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 688128 Modular degree for the optimal curve
Δ 34279008730311744 = 26 · 38 · 710 · 172 Discriminant
Eigenvalues 2- 3+ -2 7-  4  2 17+ -8 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-134374,-16691576] [a1,a2,a3,a4,a6]
Generators [2912681:11150244:6859] Generators of the group modulo torsion
j 35637273157312/4552605729 j-invariant
L 4.2461901090381 L(r)(E,1)/r!
Ω 0.25145300223452 Real period
R 8.4433076347148 Regulator
r 1 Rank of the group of rational points
S 1.0000000004618 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 79968co1 11424u1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations