Cremona's table of elliptic curves

Curve 80106g1

80106 = 2 · 3 · 132 · 79



Data for elliptic curve 80106g1

Field Data Notes
Atkin-Lehner 2+ 3+ 13- 79+ Signs for the Atkin-Lehner involutions
Class 80106g Isogeny class
Conductor 80106 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 95040 Modular degree for the optimal curve
Δ 153557434368 = 215 · 33 · 133 · 79 Discriminant
Eigenvalues 2+ 3+  2  1  0 13-  7  1 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-1784,21312] [a1,a2,a3,a4,a6]
j 286060914469/69894144 j-invariant
L 1.9270914223528 L(r)(E,1)/r!
Ω 0.96354568551972 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 80106bc1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations