Cremona's table of elliptic curves

Curve 80496u3

80496 = 24 · 32 · 13 · 43



Data for elliptic curve 80496u3

Field Data Notes
Atkin-Lehner 2+ 3- 13- 43- Signs for the Atkin-Lehner involutions
Class 80496u Isogeny class
Conductor 80496 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 298598188741632 = 210 · 38 · 13 · 434 Discriminant
Eigenvalues 2+ 3- -2 -4  4 13- -2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-28011,-1601494] [a1,a2,a3,a4,a6]
Generators [-119:216:1] [265:3096:1] Generators of the group modulo torsion
j 3255982543012/399999717 j-invariant
L 9.1388504845707 L(r)(E,1)/r!
Ω 0.37200725895271 Real period
R 1.5353951879642 Regulator
r 2 Rank of the group of rational points
S 1.0000000000034 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 40248o3 26832d3 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations