Cremona's table of elliptic curves

Curve 80560g1

80560 = 24 · 5 · 19 · 53



Data for elliptic curve 80560g1

Field Data Notes
Atkin-Lehner 2- 5+ 19+ 53- Signs for the Atkin-Lehner involutions
Class 80560g Isogeny class
Conductor 80560 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 2118912 Modular degree for the optimal curve
Δ 82263629952080 = 24 · 5 · 194 · 534 Discriminant
Eigenvalues 2- -2 5+ -2  0  6  2 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,-13150681,-18360064266] [a1,a2,a3,a4,a6]
Generators [1368590771179436:-2188144580927869241:535387328] Generators of the group modulo torsion
j 15719853405797699917103104/5141476872005 j-invariant
L 3.5250519568757 L(r)(E,1)/r!
Ω 0.079279790011793 Real period
R 22.231718557142 Regulator
r 1 Rank of the group of rational points
S 0.99999999978799 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20140c1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations