Cremona's table of elliptic curves

Curve 80883d1

80883 = 32 · 11 · 19 · 43



Data for elliptic curve 80883d1

Field Data Notes
Atkin-Lehner 3+ 11- 19- 43- Signs for the Atkin-Lehner involutions
Class 80883d Isogeny class
Conductor 80883 Conductor
∏ cp 60 Product of Tamagawa factors cp
deg 180480 Modular degree for the optimal curve
Δ -164530620491787 = -1 · 33 · 113 · 195 · 432 Discriminant
Eigenvalues  0 3+  2 -2 11- -5 -3 19- Hecke eigenvalues for primes up to 20
Equation [0,0,1,-6054,643218] [a1,a2,a3,a4,a6]
Generators [-782:4385:8] [116:1225:1] Generators of the group modulo torsion
j -908839507820544/6093726684881 j-invariant
L 9.6334829401698 L(r)(E,1)/r!
Ω 0.49410010003749 Real period
R 0.3249504482827 Regulator
r 2 Rank of the group of rational points
S 0.99999999999453 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 80883a1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations