Cremona's table of elliptic curves

Curve 81180q2

81180 = 22 · 32 · 5 · 11 · 41



Data for elliptic curve 81180q2

Field Data Notes
Atkin-Lehner 2- 3- 5- 11- 41+ Signs for the Atkin-Lehner involutions
Class 81180q Isogeny class
Conductor 81180 Conductor
∏ cp 192 Product of Tamagawa factors cp
Δ -5.5832306905606E+21 Discriminant
Eigenvalues 2- 3- 5-  4 11- -4  4  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,1331673,3546024446] [a1,a2,a3,a4,a6]
Generators [247:62370:1] Generators of the group modulo torsion
j 1399422981635151536/29917002585737025 j-invariant
L 8.6892240657439 L(r)(E,1)/r!
Ω 0.10123225395193 Real period
R 1.7882196063403 Regulator
r 1 Rank of the group of rational points
S 1.0000000003248 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 27060c2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations