Cremona's table of elliptic curves

Curve 81585bg1

81585 = 32 · 5 · 72 · 37



Data for elliptic curve 81585bg1

Field Data Notes
Atkin-Lehner 3- 5- 7- 37- Signs for the Atkin-Lehner involutions
Class 81585bg Isogeny class
Conductor 81585 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 24192 Modular degree for the optimal curve
Δ 178426395 = 39 · 5 · 72 · 37 Discriminant
Eigenvalues -1 3- 5- 7-  5  1  6 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-167,564] [a1,a2,a3,a4,a6]
Generators [-1:27:1] Generators of the group modulo torsion
j 14338681/4995 j-invariant
L 4.8953538098584 L(r)(E,1)/r!
Ω 1.6557980459644 Real period
R 0.73912302039473 Regulator
r 1 Rank of the group of rational points
S 0.99999999964679 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 27195e1 81585j1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations