Cremona's table of elliptic curves

Curve 82800fx2

82800 = 24 · 32 · 52 · 23



Data for elliptic curve 82800fx2

Field Data Notes
Atkin-Lehner 2- 3- 5- 23- Signs for the Atkin-Lehner involutions
Class 82800fx Isogeny class
Conductor 82800 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ -6.3713127615852E+23 Discriminant
Eigenvalues 2- 3- 5- -5  0  2 -3 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-74923275,-252553409350] [a1,a2,a3,a4,a6]
Generators [10351:284526:1] Generators of the group modulo torsion
j -24923353462910020825/341398360424448 j-invariant
L 4.3216614092058 L(r)(E,1)/r!
Ω 0.025636662726612 Real period
R 7.0238949264849 Regulator
r 1 Rank of the group of rational points
S 1.0000000007004 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10350bt2 27600bz2 82800dp2 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations