Cremona's table of elliptic curves

Curve 8325t1

8325 = 32 · 52 · 37



Data for elliptic curve 8325t1

Field Data Notes
Atkin-Lehner 3- 5+ 37+ Signs for the Atkin-Lehner involutions
Class 8325t Isogeny class
Conductor 8325 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 5760 Modular degree for the optimal curve
Δ 10536328125 = 36 · 58 · 37 Discriminant
Eigenvalues  0 3- 5+  3  5 -4 -4 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-1200,-15219] [a1,a2,a3,a4,a6]
j 16777216/925 j-invariant
L 1.6278855049448 L(r)(E,1)/r!
Ω 0.81394275247241 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 925a1 1665d1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations