Cremona's table of elliptic curves

Curve 83475t8

83475 = 32 · 52 · 7 · 53



Data for elliptic curve 83475t8

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 53- Signs for the Atkin-Lehner involutions
Class 83475t Isogeny class
Conductor 83475 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 4.2306935763359E+24 Discriminant
Eigenvalues -1 3- 5+ 7+  4  2  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-2922788255,60820332002372] [a1,a2,a3,a4,a6]
Generators [817245244340861622:-167332944601186859195:11533984760584] Generators of the group modulo torsion
j 242419872314743996084037281/371418914794921875 j-invariant
L 3.9572163069971 L(r)(E,1)/r!
Ω 0.066327525503278 Real period
R 29.830875486434 Regulator
r 1 Rank of the group of rational points
S 0.99999999943745 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 27825l8 16695j7 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations