Cremona's table of elliptic curves

Curve 83520dp1

83520 = 26 · 32 · 5 · 29



Data for elliptic curve 83520dp1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 29- Signs for the Atkin-Lehner involutions
Class 83520dp Isogeny class
Conductor 83520 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 2433024 Modular degree for the optimal curve
Δ -2.2750823847203E+21 Discriminant
Eigenvalues 2- 3+ 5+  2  2  0  2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,2604852,1627248528] [a1,a2,a3,a4,a6]
Generators [377004754386:-43584664210631:28652616] Generators of the group modulo torsion
j 378827638483293/440926208000 j-invariant
L 7.5172392754206 L(r)(E,1)/r!
Ω 0.097290107095149 Real period
R 19.316556178732 Regulator
r 1 Rank of the group of rational points
S 0.99999999974291 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 83520h1 20880bn1 83520dv1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations