Cremona's table of elliptic curves

Curve 85200q2

85200 = 24 · 3 · 52 · 71



Data for elliptic curve 85200q2

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 71- Signs for the Atkin-Lehner involutions
Class 85200q Isogeny class
Conductor 85200 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 11614464000 = 211 · 32 · 53 · 712 Discriminant
Eigenvalues 2+ 3+ 5-  0  0  2  0  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-568,-368] [a1,a2,a3,a4,a6]
Generators [-8:60:1] Generators of the group modulo torsion
j 79303642/45369 j-invariant
L 6.1318773655387 L(r)(E,1)/r!
Ω 1.0596943011142 Real period
R 0.72330734412878 Regulator
r 1 Rank of the group of rational points
S 1.0000000002153 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 42600i2 85200bg2 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations