Cremona's table of elliptic curves

Curve 85260c1

85260 = 22 · 3 · 5 · 72 · 29



Data for elliptic curve 85260c1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7- 29+ Signs for the Atkin-Lehner involutions
Class 85260c Isogeny class
Conductor 85260 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 78624 Modular degree for the optimal curve
Δ -4094185200 = -1 · 24 · 3 · 52 · 76 · 29 Discriminant
Eigenvalues 2- 3+ 5+ 7-  5  5 -7  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1486,22765] [a1,a2,a3,a4,a6]
Generators [23:15:1] Generators of the group modulo torsion
j -192914176/2175 j-invariant
L 5.4103485823044 L(r)(E,1)/r!
Ω 1.3942906604588 Real period
R 1.9401795964897 Regulator
r 1 Rank of the group of rational points
S 1.0000000000569 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 1740g1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations