Cremona's table of elliptic curves

Curve 85491f1

85491 = 32 · 7 · 23 · 59



Data for elliptic curve 85491f1

Field Data Notes
Atkin-Lehner 3- 7+ 23+ 59+ Signs for the Atkin-Lehner involutions
Class 85491f Isogeny class
Conductor 85491 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 211200 Modular degree for the optimal curve
Δ -1937834841411 = -1 · 36 · 7 · 235 · 59 Discriminant
Eigenvalues  2 3-  1 7+ -3  5 -3  7 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-2847,-88907] [a1,a2,a3,a4,a6]
j -3500729749504/2658209659 j-invariant
L 5.6948267638576 L(r)(E,1)/r!
Ω 0.31637926862059 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 9 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 9499a1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations